Role of artificial intelligence in drug development

  • V. Keerthana Department of Pharmaceutics, Sree Abirami college of pharmacy, Coimbatore-21, Tamil Nadu, India
  • S. Shameer Mohaideen Department of Pharmaceutics, Sree Abirami college of pharmacy, Coimbatore-21, Tamil Nadu, India
  • L.V. Vigneshwaran Department of Pharmaceutics, Sree Abirami college of pharmacy, Coimbatore-21, Tamil Nadu, India. https://orcid.org/0000-0001-6880-9613
  • M. Senthil Kumar Department of Pharmaceutics, Sree Abirami college of pharmacy, Coimbatore-21, Tamil Nadu, India.
Keywords: Artificial intelligence, drug development, machine learning, deep learning, predictions

Abstract

In the last decade, artificial intelligence (AI) has revolutionised the field of drug research. Staff abilities (55 percent), data structure (52 percent), and resources were all factors in AI deployment (49 percent ). Nearly 60% of respondents said they expected to hire more people in the next two years to assist AI usage or adoption in drug development. AI in areas like as drug research and development, drug repurposing, boosting pharmaceutical productivity, and clinical trials, among others, minimises human effort and allows for the achievement of objectives in a short amount of time. On the one hand, AI techniques used in drug development bring the drug development process and the use of various models closer to medicinal chemists, while on the other hand, AI methods used in drug development bring the drug development process and the use of various models closer to mathematicians.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Jeon, J., Nim, S., Teyra, J., Datti, A., Wrana, J. L., Sidhu, S. S., ... & Kim, P. M. (2014). A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome medicine, 6(7), 1-18.

Johnson, J. I., Decker, S., Zaharevitz, D., Rubinstein, L. V., Venditti, J. M., Schepartz, S., ... & Sausville, E. A. (2001). Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. British journal of cancer, 84(10), 1424-1431.

Duch, W., Swaminathan, K., & Meller, J. (2007). Artificial intelligence approaches for rational drug design and discovery. Current pharmaceutical design, 13(14), 1497–1508. https://doi.org/10.2174/138161207780765954

Couch, M. J., Blasiak, B., Tomanek, B., Ouriadov, A. V., Fox, M. S., Dowhos, K. M., & Albert, M. S. (2015). Hyperpolarized and inert gas MRI: the future. Molecular Imaging and Biology, 17(2), 149-162.

Mak, K. K., & Pichika, M. R. (2019). Artificial intelligence in drug development: present status and future prospects. Drug discovery today, 24(3), 773-780.

Hu, L., Zhang, C., Zeng, G., Chen, G., Wan, J., Guo, Z., ... & Liu, J. (2016). Metal-based quantum dots: synthesis, surface modification, transport and fate in aquatic environments and toxicity to microorganisms. RSC advances, 6(82), 78595-78610.

Badillo, S., Banfai, B., Birzele, F., Davydov, I. I., Hutchinson, L., Kam-Thong, T., Siebourg-Polster, J., Steiert, B., & Zhang, J. D. (2020). An Introduction to Machine Learning. Clinical pharmacology and therapeutics, 107(4), 871–885. https://doi.org/10.1002/cpt.1796

Samuel AL. Machine learning. (1959) The Technology Review. Nov;62(1):42-5.

Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., & Schmidhuber, J. (2011). Natural evolution strategies. arXiv preprint arXiv:1106.4487.

Angermueller, C., Pärnamaa, T., Parts, L., & Stegle, O. (2016). Deep learning for computational biology. Molecular systems biology, 12(7), 878.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533-536.

Smietana, K., Siatkowski, M., & Møller, M. (2016). Trends in clinical success rates. Nat Rev Drug Discov, 15(6), 379-80.

Crispi, Stefania et al. “Antiproliferative effect of Aurora kinase targeting in mesothelioma.” Lung cancer (Amsterdam, Netherlands) vol. 70,3 (2010): 271-9. doi:10.1016/j.lungcan.2010.03.005

Bai, Q., Tan, S., Xu, T., Liu, H., Huang, J., & Yao, X. (2021). MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Briefings in bioinformatics, 22(3), bbaa161.

Wan, B. N., Liang, Y. F., Gong, X. Z., Li, J. G., Xiang, N., Xu, G. S., ... & Xia, T. Y. (2017). Overview of EAST experiments on the development of high-performance steady-state scenario. Nuclear Fusion, 57(10), 102019.

Mayr, A., Klambauer, G., Unterthiner, T., & Hochreiter, S. (2016). DeepTox: toxicity prediction using deep learning. Frontiers in Environmental Science, 3, 80.

Walters, W. P., Stahl, M. T., & Murcko, M. A. (1998). Virtual screening—an overview. Drug discovery today, 3(4), 160-178.

Mohan, V., Gibbs, A. C., Cummings, M. D., Jaeger, E. P., & DesJarlais, R. L. (2005). Docking: successes and challenges. Current pharmaceutical design, 11(3), 323-333.

Woodcock, J., & Woosley, R. (2008). The FDA critical path initiative and its influence on new drug development. Annu. Rev. Med., 59, 1-12.

D. Segall, M. (2012). Multi-parameter optimization: identifying high quality compounds with a balance of properties. Current pharmaceutical design, 18(9), 1292.

Holford, N., Ma, S. C., & Ploeger, B. A. (2010). Clinical trial simulation: a review. Clinical pharmacology and therapeutics, 88(2), 166–182. https://doi.org/10.1038/clpt.2010.114

Keskinbora, K. H. (2019). Medical ethics considerations on artificial intelligence. Journal of clinical neuroscience, 64, 277-282.

Published
18-04-2022
How to Cite
Keerthana, V., Mohaideen, S. S., Vigneshwaran, L., & Kumar, M. (2022). Role of artificial intelligence in drug development. International Journal of Research in Pharmaceutical Sciences and Technology, 3(1), 09-14. https://doi.org/10.33974/ijrpst.v3i1.293
Section
Review Article